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FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE ON A SEMI-
INFINITE ELASTIC SPACE AND ON AN ELASTIC STRATUM
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The impedance of a rigid circular plate attached to the free surface of a semi-infinite elastic space
or an elastic stratum is determined for its four degrees of freedom. The solution of the dual integral
equations arising from this mixed boundary-value problem is avoided by reference to Rayleigh’s
reciprocal theorem. This enables the functions of frequency, which determine the in-phase and
out-of-phase components of displacement of the plate, to be located between two close bounds
and lying much closer to one than to the other. These bounds appear as infinite integrals involving
branch functions and are reduced to tractable finite integrals by integration in the complex plane.
Dissipation of waves to infinity produces an effective damping, and the added effect of the in-
clusion of true damping in the medium is discussed.

It is to be expected, of course, that the unloaded rigid plate attached to the free surface of a
semi-infinite elastic space does not resonate. The change of impedance of the plate with frequency
is found to be similar for the two translations and also similar for the two rotations. Resonance
occurs in the case of vertical and horizontal translation of the plate attached to the surface of an
elastic stratum. However, it does not exist for rotations of the plate on the stratum. Instead, a
maximum in the response appears, this maximum being more defined the greater the ratio of
plate diameter to stratum depth. The addition of small true damping in the medium changes the
characteristics very little.

Experimental work substantiating these theoretical results, together with a general discussion
of the results and their applications in geophysics and engineering, is being published shortly.

1. INTRODUCTION

Analytical approaches follow from the fundamental work of Lamb (1904) on the pro-
pagation of elastic waves. Of the eight cases treated ir this paper, two have been considered
before. Reissner (1936) considered the case of the harmonically forced vertical translation
of a rigid circular plate attached to an elastic half-space but used greatly simplified
boundary conditions and his results are of qualitative interest only. In a further paper
Reissner (1937) considered the torsional oscillations of an elastic half-space but again
simplified the boundary conditions. However, Reissner & Sagoci (1944) considered this
latter problem again, using a system of oblate spheroidal co-ordinates and producing a full
solution. Unfortunately, this method is inapplicable to the other cases. Marguerre (1933)
treats wave propagation in elastic strata but not the special sources required in this work.
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G. N. BYCROFT ON THE

Although circular bases only have been treated the results will be at least qualitatively
true for other base shapes.

The analysis is mainly concerned with the determination of two functions of frequency
called f; and f, being effectively the in-phase and out-of-phase components of displacement
of the unloaded plate. The effect of loading the plate by the addition of mass or moment of
inertia follows simply from these two functions. The adoption of certain dimensionless
variables decreases the number of parameters and the following notation is convenient.

(1)
(2)
(3)

(4)

()
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

(15)

(16)
(17)
(18)
(19)
(20)

(21)

(22)
(23)

(24)

NoraTION

A, # = Lamé’s elastic constants of the medium.
p = density of the medium.
p = angular velocity of impressed force or couple on the plate.

py? — 72 Bl’fzkz é=J<_L):T
(A+24) 77 p Tk Ntz
1o = radius of plate.
0 = depth of stratum.
oty =
u, v, w are displacements of a point 7, §, z in these co-ordinate directions.
U, V, W are displacements of the centre of the plate in the respective directions.
¢ = angle of rotation of the plate.
P = amplitude of the exciting force.
M = amplitude of the exciting couple.
kro=ay, kr=a, ké=y.

J1, f> are functions of @, and 7 and are such that the translation or rotation of the

unloaded plate may be given by the rcal ’part of
bt

U Vor W= P/; +if,) or ¢ = /”3 ( fi+1f,), where f; and f, are different for
0

each mode; the real part is implied in the following analysis.
m, = mass attached to the plate.

I, = moment of inertia of mass.

A = amplitude of vibration of plate.

L = average power input.

¥ = phase angle between exciting force and the resulting displacement.

=M 1
pr’ org’

It is easy to show that the following relations hold for the cases of translation when
the plate is loaded with a mass:

J2

WY = )

-Fullved s

HroN \(1+ba§ f1)2+ (b4 15)*)°
P2 { apfo }
— 208./(ow) \(1+8a3 /,)?+ (843 ;)2

When considering rotatlon replace ﬂP by A43 and b by &',


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s A
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 329

2. SOLUTIONS OF THE ELASTIC WAVE EQUATIONS
The equations of motion of a linear elastic medium, in cylindrical co-ordinates, may
be expressed by the following equations. The notation is that of Love:

A 2udw, . 3w,

P = A2 e =g T2 (1)

0% 10A_, dv, 00,

Pop = A+ L5 =G, T UGS (2)

0w 0A 249 2udw,

o = Mo - —E = (o)) + L5, (3)
_10(rw)  10v  dw
7o Tra oz (4)

du Jw 1dw dv

20y =5 —%, 20, =g (5)
_1(d(rv) Ou

20, = (555 | (6)

It has been shown by Sezawa (1929) that u, v, w are particular solutions of the above
equations, where

U=utUytiy V=010F0; W= Wt wytws, (7)
19 2) az+11)tcos
Am;ﬁg‘H (%r) €~ sin mo, (8)
m H (xr .,, sin
m}?*_# S o™ (9)
—aztipr COS
= Am}?Hm(xr) eaztipt sin mb, (10)
m H®(xr) _, .. cos
u, =B, 3 ——~——r( ) ﬂZHMSiIl md, (11)
10 poripe SN
Bm—za—H@)(xr) e Aztipt _Cosmﬁ, (12)
w,y = 0, (13)
c, B9 2 H® ~pz+ipt €08 0
“s = Vm k2 3y (xr) e sin (14)
@ ;
vy =—C,, /lf;H r(xr) e-Az+ipt _SI(I;)S m0, (15)
—pzrip COS ,
Cm?H(Z)(xr) ehat Pfsm mb, (16)
a=+(—m)E, f=+(x2—kH)} (17)

m, x are arbitrary parameters, 4,,, B,,, C,, are arbitrary constants with respect to 7, z, 0, ¢,
and may be taken as functions of x,
H2(xr) =J,,(xr) —iY,,(xr), (18)

i.e. a second Hankel function.
41-2
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It will be shown that combinations of these three solutions may be made to fit the various
boundary conditions considered in this paper. In general, the method will be to integrate
the above solutions with respect to the arbitrary parameter #, thus obtaining a more
generalized solution, and, by using the Fourier—Bessel integral theorem, choose the func-
tions 4,,(x), B,,(x), C,,(x) to satisfy the various boundary conditions. The resulting infinite
integral, however, must be further examined in order to determine its significant value.
This is the method adopted by Lamb (1904). It is straightforward, but perhaps not as
elegant as a Hankel transform approach would be. This latter method could certainly
be used for rotationally symmetric cases, i.e. m = 0, as it is possible in these cases to express
the displacement as derivatives of two potentials ¥ and X which satisfy

(V24 )W =0, (VE+A%)X =0,
#? 14 & (19)
e 2, 29,0
Vi= IR

When m=0 it is not clear whether a Hankel transform of the equations would provide
a readily available result.

The notation relating to stresses is that used by Love, and the following well-known
relations between stress and displacement hold:

ﬁ=m+m%, ’
- sarnfid
dw

=iy, (20)
- -tet8)
A=%+§+%%+%.J

The values of 4,,(x), B,,(x), C,(x), necessary to satisfy the boundary conditions of the
various cases, are considered under four separate headings corresponding to the four degrees
of freedom of the plate. Some general remarks may be made here regarding the three
solutions. Only the J, (xr) part of the Hankel function is needed. For axial symmetry
m = 0 and for rotation about a horizontal axis or translation in a horizontal plane m = 1.

For motion of the plate on a semi-infinite space the solutions containing the factors,
exp (—az), exp (—pz), indicating no boundary at a great depth, are used. However, for
motion of the plate on an elastic stratum, it is necessary to compound these three solutions
with the corresponding ones involving exp («z), exp (fz).

The following results are needed often in the theory.


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 331

(a) Dual integral equations
Busbridge (1938) has shown that the solution of the pair of integral equations

[T v ) dy = o) (0<s<), (21)

[[rw 3y =0 (s>, (22)
where g(s) is given and f(y) is to be found, is given by
9-ta P

) = g [ e [ 10 -sets) dy

1
[ wn—wpedu [ o) ()0, () g, (23)
valid for > —2 or (—v—1) <(a—3%) < (v+1). The function g(y) must be integrable over
the interval (0, 1).
(b) Somine’s first finite integral
zv+l in
J,u+u+l(z) = m 0

where both #Z(x) and £ (v) exceed —1.

J,(zsind) sin#*16 cos®*1 0 d, (24)

, (¢) Hankel functions
"The following properties of Hankel functions are used in the analysis, the notation being

that of Watson (1944): HO(x) = J,(x) Y, (%)
. ! e 25
HP() -——J,,(x)—iYn(x),}’ =)
2\ . '
and when x becomes large HP(x) ~ (ﬂ) eiv=dnm—im)
(26)

HP(x) ~ (2)' e-io-tnn-tn,

The factor ei#” H{)(x) represents a wave progressing towards the origin and ei?t HP(x)
a wave progressing from the origin:

HY(—x) = —HP(x),
P(—x) = —HP() )
HP(—5) = HP().
(d) Fourier—Bessel integral expansion
The following expansion is true if n>> —1:
flx) = f WA t{ f "R I (1) & dx'} dt.  (28)
0 0 ‘

(¢) Contour integration with branch-points
Infinite integrals involving the branch points « =+ (x22—A2)}, g = + (x2—£)}, occur
repeatedly in the following analysis. It is desirable to integrate these integrals around an
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infinite semicircle in the upper half-plane and along the horizontal axis (figure 1). By
staying on one branch of the above branch functions it follows that integrands containing
these functions may be integrated around this contour if the sign of the radical is changed
to the left of the branch-points —% or —&.

7

ao e )

-8 ‘II +8 g
- +0

Ficure 1. The signs to be given to the radicals « and g.

3. VERTICAL TRANSLATION
Semi-infinite elastic space
When the light rigid circular plate is attached to the free surface of an elastic half-space
and excited by a symmetrical vertical force a solution may be obtained from the particular
solutions given by equations (8 to 10) and (14 to 16).
The motion is rotationally symmetric, i.e. m = 0, v = 0, and the other displacements
follow as

Axe—*2  (Cx? e’ﬂz .
w=|———"p Jo(xr) eir, (30)

(a) Static displacement of plate

First, the static displacement of the plate is considered. This, of course, is the well-known
Boussinesq problem and is solved here using the dual integral equations already mentioned.
If the two arbitrary functions 4(x) and C(x) are to be retained the static solutions must be
derived from the dynamic ones as follows. Let the frequency tend to zero, i.e. 4, £ tend to
zero, and expand to the first order in %, £:

[0S e o

W~ ‘2;‘ (1— kx2+}‘zz) 61;’2‘2 (1 LBz Z)] ~52 J. (xr). (32)

If these are rearranged and ;ix + C(k2 SR ) 4,, (33)
A;C" ~ By = (39

then = (4,4 B, z) e7*J | (xr), (35)

w— [A 1(7 +1)-|—Blz:| &= J (x1). | (36)
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From these displacements and the relations quoted between displacement and stress it
follows that the normal and tangential stresses on the free surface, z = 0, are given by

— B,r? -
5 = zﬂ[(-ﬂ—l_fl—)—Alx]e % J,(x1), | (37)

7 2/1[(—123%1)—/1136] e (ar). (38)

Using this method it is necessary to assume that the shear stress everywhere on the free
surface vanishes. This means that horizontal movement can exist under the plate. However,
it is indicated later that prevention of this movement by friction will cause little change in
the vertical deflexion. Put Z7 = 0 and 4,(x) = 4,(x)/7? and then

w = Ay(x) Jo(), (39)
2z = 2ud,(x) x(12—1) J o(xr). (40)

These solutions are generalized by integrating from 0 to co with respect to the arbitrary
parameter x and then, if 4 is the vertical displacement of the plate and 7, is its radius, 4(x)
is to be chosen so as to satisfy the remaining two boundary conditions given by

w =f:A(x)Jo(xr) de—d (r<ry), (41)
2= 2u(r2—1) f: 1(x) wJy(ar) dx =0 (r>ny). (42)
Put rl =S5, Xxry=1, (43)

and the equations become a particular case of the dual integral equations (21) and (22),
already quoted when @ = —1, g = 0, g(s) = dr,, i.e.

[T @) Ky dy = dry - s<), (44)

[TF sy =0 (s>1). (45)

The solution of these two equations is

_ 2dr,siny

Fy) == (46)
The normal stress under the plate is now given by
=  4u(r*—1) a’rOJ‘co .
2= S0 | sing(sy) dy
_ 4ur*—1)d |
= oy (1=s)F (Watson 1944, p. 405). (47)

This equation shows that at the edge of the plate the stress is unbounded.
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If the normal stress is integrated over the circle r<r,, the vertical force P necessary to
depress the plate d is found to be

P =8ud(1>—1)r,

2rydE
- e, (48)
the well-known Boussinesq deflexion.
The horizontal movement under the plate is given by
_ 2dr? f‘” sinyJ, (sy) dy
m Jo Y

2

2dr’s (Watson, p. 405). (49)

- 14 (1—s2)%]

At the centre, s = 0, the movement is zero increasing to 2dr%/m at the periphery s = 1.
Incompressibility of the medium, denoted by Poisson’s ratio v = { or 72 = 0, means no
horizontal movement under the frictionless plate.

Physically, the stretching of the surface due to the depression under the plate is exactly
balanced by the increase in area caused by the Poisson ratio effect. The maximum hori-
zontal movement occurs when v =0, i.e. 72=} and s=1 and then u =d/n. If this
horizontal movement was restrained it is unlikely that its effect on the vertical motion
would be greater than d/4n?= d/40. This effect is neglected in what follows.

(b) Dynamic displacement of plate
From equations (20), (29) and (30), the relevant dynamic displacements and stresses are

y— A(x)};e—az C(x) /S’xe Z:IJ (xr) eitt, (50)
" — I:A )oce—az_ x)x e 4z ]J (xr) eitr, (51)>
5 /l[:A x) (k ;22952) e ocz+ (x) 2,6’x2 e ﬂz‘-'l Jy(ar) e, (52)
7o = AR B ()2 ,;2"‘2) ey e, (53)

(i) Free vibrations. Rayleigh waves. These are found by equating the surface stresses
Zz = z# = 0 when z = 0, yielding the following well-known frequency equation determined

igh:
by Raylelg fo) = (= H)2—a2(a2— )} (2= R)E = 0. (54)

This equation has the following real roots

v=1 12=0, x = 1-04678%,
V= ?Ll" 72 = T]'z', X = %‘(3+~/3)%k’ (55)
v=0, 12=14, x =3}(3+/5)k

If = R—R, fi=—F, | (56)
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the free waves are given by |
g = D et [—x, (] —3k2) e~ M5+ B x, €7 T (x,7), (57)
wy = D e[ —ay (x} —34%) €712+, 43 e=A17] T (x4, 7), (58)

where D is an arbitrary constant. When z = 0 these free wave displacements are
uy = — D, x, (26} — k2 — 20, £,) J (%, 7) €'#, (59)

(ii) Forced vibrations. Generalize the solutions (50) to (53) by integrating with respect to
x from 0 tooo and

u — eitt f [ %)z e C(")ﬂxe Z]Jl(xr) dx, (61)
w=c[" [A “e_“— Lkl ﬂ]J (ar) d, (62)
2 — peitt j [A(x) —2¢) e_M+ Gl )2,‘52’“ )7 (ar) ds, (63)

pen [ 2"‘“’“—“") B2 P o) . (64)

Stresses and displacements elsewhere than the free surface, z = 0, are not required in
this problem, and in what follows only these latter displacements are considered. If the
other displacements are required they follow from the values of 4(x) and C(x), determined
later, together with equations (61) to (64).

As already mentioned in the static case, it greatly simplifies the results if it is assumed that
zZ# = 0, z = 0, i.e. the plate is frictionless, allowing horizontal sliding to take place under-

neath it. Put z? = 0, z = 0 and
— 20k2A(x)

o 2w (65)
and then u(r, 0) = et f :A( ) %(K? “k“z?;::-Fzzf;) L (#7) dx 0
() = eil’tf wA(Z)z(“lf?%éz)) & (67)

It is required that w(r, 0) = d, r<<r,and zz = 0, r>7,, but these two dual integral equations
determining A(x) do not have an easy solution. It may be shown that the solution can be
approximated to as closely as desired but the computation necessary is prohibitive. Reissner
evaded these mixed boundaries by assuming a constant normal stress over 0<r<r, and
taking the displacement of the rigid plate as the displacement at the centre of the circle.
This is a very crude approximation to a rigid plate and makes the value of the functions
much too high. A very close approximation can be made in the following fashion. Assume
that the normal stress is that of the static case which can be solved exactly. Then, at low
frequencies, with this stress distribution, the displacement w(r,0) (r<r,), will be sub-
stantially constant as required.

42 Vor. 248. A.
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As the frequency increases w(r, 0) (r<r,), will become a function of 7. Physically, r<r,
now bridges a greater part of the wavelength of the waves being propagated outwards.
Under a rigid plate the pressure distribution changes with frequency. It will be shown later
that by taking a particular average of w(r, 0) over r<(7, it is possible to specify the deflexion
of a rigid plate between two close bounds. For the minute, the problem of the displace-
ments when the stress ZZ over r<(r, is that of the static case, is considered, i.e. put

—~ Peitt

2 gy U0
Express zz by the Fourier-Bessel integral (equation (28))
o ro P ettt Jy(xy) ydy
zz ——fo Jo(wr) x{jo Sy (r— g }dx. (70)

The integral inside the brackets may be evaluated by putting y = 7,sin ¢ and noticing that
it is then the special case of Sonine’s first finite integral when y = 0, z = x7y, v = }.
Then

0 Jy(xy) ydly _sin () -
o (5—y*)?* x
Comparison of equation (68) with equation (70) will show that all the conditions will be
satisfied if Alx) — Psin (xry) h%(k*—2x%) (72)
8umro f(x) ’
where S(x) = (22— k22— 2%,
— Peltt °x(2x2— k2 — 2af) sin (xry) J; (xr) dx
d th ,0) = | o) {¥) C¥ 73
and then u(r, 0) e ) (73)
_ Peitt regk?sin (xr,) Jy(xr) dx
w(r,0) = o - fo o . (74)

Following Lamb, we investigate these integrals in order to determine their relevant value.
This uncertainty arises from the fact that f{x) has a real root in the range of integration,
this root corresponding to the free waves already discussed. All the boundary conditions
are satisfied except the radial boundary at infinity. There are to be no reflexions from in-
finity, and the above integrals are now exhibited in a form in which the nature of the waves
at a large radius may be examined.

Fut T () = HH () + HP ()],
and equations (73) and (74) become

_ —Peltt o x(2x2—k%2—2af) sin (xry) H{V (x7) dx
ur,0) = T | e , (75)
_ Peitt = ok? sin (xry) HP (xr) dx
w(r,0) = for j - s . (76)

Integrate these around a semi-infinite circle in the upper half-plane, changing the signs
of @ and f to make the integrand analytic as indicated previously. It can be easily shown
that if r>r, then the integral vanishes around the infinite semicircle. Now £ <k <x, always,
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and if the signs of , and f, at the pole x = — x, are changed, the sum of the two residues at
+x, for w(r, 0) follows as '

oy K?sin (x,70) HP (x,7)  k2aysin (x7) HP (%,7)

S (%)) S(=x)
2a, k2 sin (x, 7o) Jo(%,7) , df(x)
S r}')(cxl) + ’ where f (x) _dx;x_ (77)

The displacement w(r, 0) now assumes the form

w(r,0) — ;;:0 [2mlc2<x1 51; ((2 ;0) Jmr) f ak?sin (x;g()xl)flaz)(xr) dx
o fk Fa(x?— %kzzf(ii)n }’EEZS,) HE (xr) dx], (78)
where F(x) = (82— }k2)2 +2%p. (79)
Ao ufr,0) — Iai:;:t [—271x1(2x%—k2 —;l(,;’g '§in (xy70) Yy (x,7)
N f: kzaﬂx(sz——lc;%;)irIl? ((i;") HP (xr) dx] C (s0)

Because of the contour integration the Cauchy principal value of the integrals in (78) and
(80) is implied. A consideration of the three integrals occurring in (78) and (80) will show
that because (x7) is positive in the ranges of integration and because of the factors H2 (xr),
the integrals are sums of waves diverging from the origin.

However, the first terms in « and w represent standing waves. Now it is to be noticed
that if to these solutions the free waves u,, w,, equations (59) and (60), are added, then none
of the boundary conditions already satisfied are violated in any way, and the result is still
a solution. Further, by choosing the amplitude of the waves u; and w, correctly, it is possible
to convert the standing wave part in above expressions into a travelling wave and so satisfy
the radial boundary at infinity. :

In (59) and (60) put — P2misin (x, 7o)

vl — lﬁﬂﬂrof’(xl) b (81)
_ Pe#2qisin (x;7) %, (23 — K2 —2a, ) Jy (%,7)
and U = 16umry f' (x,) , ’ 52
_ —Pel?2qisin (x,7,) kK2 Jy(x,7)
0y = Tormaes . (83)

Addition of these to (78) and (80) cancels the standing wave part of w(r,0) and changes"
that of u(r, 0) to a term containing i[J;(xr) —iY|(xr)] = 1H® (xr), i.e. a diverging wave. All
the boundary conditions are now satisfied and the final displacements are given by

_ —Peltt (2 x(2x2—k2—2af) sin (xr,) Jy (xr) dx
u(r, 0) = 8unr, f 0 Slx)
Peit2nisin (x,7,) x,(2x2 —k2—2a, f,) J;(x;7)
| * 16umro (1) B
_ Pelt roak?sin (xry) Jy(xr) dx  Pel 2misin (x;7,) k2, Jy(#, r)
w(r, 0) = 8umr, fo JS(x) ' 16unto f (%) (85)

42-2
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where the Cauchy principal values of the integrals are now understood. It is convenient
to change the parameter x and to introduce the following non-dimensional variables:

x=4k0, a=kr, ay=rkry, hlk=1, x =kl (86)
then b (aB)do P (an0y) (03 —72)} Jo(aby)
_ Per = (02—1%)2sin (a,0) Jy(af) df P e't*2misin (a,0,) (6F—12)* Jy(ab,
w(r, 0) = 8y, fo (0) 16umr, f'(6,) (87)
and S16) = (32—} (21}

This is the solution of the vertical surface displacement in a homogeneous elastic medium
when excited by a vertical stress distribution over the area 0<r<(r,, equal to the static
stress distribution of a rigid circular plate. At low frequencies w(r, 0) (r<r,), will be approxi-
mately constant, but as the frequency increases it will become curved. w(r,0) is now
examined in order to estimate the displacement of a rigid plate. This displacement will
obviously correspond to some form of average of w(r, 0) over r<r,.

Put Peitt .
w(r, 0) = 7!7_ [Fl (a, ) 7) +1F2(aa (Z)) T)] (88)
0

F, and F, are the real and imaginary parts of equation (87). The amplitude of the vibration
at any radius is given by

Am®=£WH@ﬁ (89)

It is shown later that, in the range of g, relevant to the problem, | F| | and | £, |, as functions
of a or 7, have a negative gradient when r<r,, i.e. in this range | F| | and | ¥, | are greatest
at the centre and smallest at 7 = r,. Now f;(a,,7) and f;(a,, 7) have already been defined
as the in-phase and out-of-phase components of displacement of a rigid plate. It is easy
to show that |f,(ay,7)| is greater than |F(ag,ay7)| and |fy(ay7) | is greater than
| Fy(ags ap,7) |- ‘

Consider figure 2, illustrating | F, |, | F, | and (F{+F3)%. As g, increases, a greater part
of the effective wavelength is bridged by point 4, or 7, and it moves out to some point z say.

In order to convert the case we have solved to that of a rigid plate, forces p, and ¢, must be
superimposed on the stress distribution assumed, as indicated in figure 2, in order to make
(F?+ F3) constant, i.e. a rigid state. As the total force on the area is to be constant and equal
to P, Zp,+2q, = 0 and the Zp, will be outside some point X and Xg, inside X. Then, what-
ever the distribution of Xp, and Xg,, Zp, will be closer to the point 7 = r, than Xg,, so that the
depression of r = 7, due to Xp, is greater than the lift of r = r, due to Xgq,. Similarly, the
opposite is true for the point 7 = 0. This means that deflexion of a rigid plate lies between the
deflexions at the centre and periphery, i.e.

| Fy,5(a,a0,7) | < |f1, 2(a0,7) | <| B}, 2(0, a5, 7) | (90)
However, it is possible to find a much lower upper limit than |, ,(0,4,,7) |. Apply the
reciprocal theorem of Rayleigh (1944, p. 153) to the two sets of stresses and displacements,
i.e. the static stress distribution giving the displacements Pei#* (F, +iF,)/ur, and the rigid
plate stress distribution giving the displacement,

Pe[fi+if)/pre
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Replacing the summation by an integral over the circle 0<r<r,, we find that

L)+ i )] = [ 2T

o 2mr(r— 1) prg P [ Fi(a, a7) +iFy(a, a7)] dr

+2pr/% [Fy(a, 0,7+ iy (0, a0, )] + B, -  [Fi(a a0 7) +iFa 0], (01)

It follows from figure 2 that the sum of the last two terms in (91) is negative. Hence

orFy o(a,ay,1)dr
. 92

| /1,2(a0,7) I<U 7'0(’0_’2)% (92)
This last term provides a closer upper limit to f, ,(ay,7) and is an average of the displace-
ments over <7, formed by weighting the displacement according to the force acting there.
It will be shown, by integrating the results, that this upper limit lies close to the lower one,
i.e. thedisplacement atr = r,. The ‘average value’ is now taken to mean this kind of average.

Ay ) @

i

| Fy(a, a; 7) |
| Fy(a, ag, 7) |
VFT+F3)

FIGURE 2

It will be designated by U, V,, W, and the peripheral displacement by U, V,, W:

W J‘fo rdr {Pe‘i" f“ K2asin (xrg) Jo(#r) dx P eit'2misin (x,7,) K2y Jy(%, r)} (93)
ro(rg—12)% \8umre J o S(x) 16pmro f' (%,) '
The infinite integral may be shown to be absolutely convergent and may be integrated
under the integral sign:

7oy J d i .
f 0 ’(rgﬁ’f"}z) F= |, rosingy(arysing) dg
__sin (wr)
— o lam), (94)

i.e. Sonine’s equation (24). The displacements follow as

Pe”’tfno (62—72)¥sin? (a,0) 6 P e 2mi(6} —1%)} sin® (a,0,)
8/””‘0 0 f(ﬁ) doﬁ 16ﬂ7f7’0f’(01) aoﬁl

(aO’ T) +i.f2a(403 7)]3 (95)

e‘i"f (¢*—7%) )Esin (a,0) Jy(ay0 )dﬁ Pe‘1"2ﬂ1(¢92—72)‘5sm (ay0,) Jy(ay0,)
~ 8, S10) ’ 16umr, f(0,)

(@05 7) +1fp(ag, 7)]- (96)

e =
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(iii) Evaluation of W, and W,. The infinite integrals occurring in W, and W, contain both
a real and an imaginary part, i.e. they contain f,, , and the part of f,, , which corresponds
to energy propagated and lost spatially. The residue or free wave term, also imaginary,
accounts for the rest of if,, , and corresponds to the energy lost in Rayleigh surface waves.

o “f [(02—72%%222)_5;2)(;("52) i =1+ (97)
where M(a,6) — Jy(af]) o %(“70@

T L

R T

The integrals =" (&;;’?j (& 04(%5)22 f{g;‘%j_i)d]ﬁ (100)

oo [ 0 —1%) (1) M{at) 19 df (101

o (=5 =0~ (*1)]

are integrated around an infinite semicircle in the upper half-plane and the sign of the
radical on the left of the branch points, § = —1, § = —7, is changed to make the integrand
analytic. It can be shown that the integral around the semicircle vanishes if a<<a,. The
following expansion can thus be used to determine displacements inside the circle r<r,,
whereas the previous expansion is only true for 7>7,, i.e. displacements outside the circle.
There are six poles at the points +6,, +0,, +0, and R is the sum of the residues of X’ at
-+6,. This contour integration gives

/ 02 (72 62t M (ab (a,0) do
—EWZR f ( — D 34(,92__‘172))(222_?1)])

(7 (02—3)2 (12— 6%t M(ab) sin (a,0) dO
+) [(02—%)4—o4<az_72>?az_l)]) , (102)

as R [ O (1 —62)% M(af) cos (a,0) df
I'=% zR f [((2—3)i—04(02—12) (12—1)]
142 02—72) (1—62)% M(af)) sin (a,0) dO
“"f =) (—1)]

(103)

and I=I+1"
. s o [ (12— 02)F M(ab) cos (a,8) dO
“?ﬂz(Rr‘*‘Rr) f f(ﬁ)
162(02—12) (1—62)F M{(ab) cos (ay0) df
f L)‘l ﬂ4(ﬁ2 T2) (62_1)]
(72 492)% M(ab) sin (a,0) d0_ ; fl 62(62—12) (1—62)F M(ab) sin (a,0) df
f S) r [(P=§)=040?—77) (*~1)] )
(104

if a<<a,.
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FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 341

We are not interested in values of ¢, greater than 1-5, and the functions M(af) cos (a,8)
and M(af) sin (a,0) may be expressed as series. It is necessary, then, to evaluate the above
integrals with 6* in place of M(af) cos (a,0), etc., for a sufficient number of values of n.
These integrals may be integrated by rationalization but were, in fact, integrated graphic-
ally. Rotation of the plate about a horizontal axis gives an-exactly similar integral but with
a different series occurring in place of M(afl) cos (a,0). By putting in the respective coeffi-
cients both these cases may be integrated together. The residues are given as follows. If
g, lies outside 7 or 1 then the sign must be changed in the radical of the residue at —7or —1:

cos (ay0,) (02— $)? (62—1%)* M(at)
6,0:—03) (G7—0%) (P —1) °

=

_cos (ayh,) 6202 —1%) (63— 1)} M{(ab)

6.>1, R = (105)

,>1, R;= 0.(02—63) (02— 63) (12— 1) ) (107)
g,<1, R, = Lsin (ao( ) 632(?2(5272)(;%2;213%1?4(“0) (108)
The values of 6? are easily determined as the roots of the cubic,
(x—1)*—x2(x—72) (x—1) =a3(12— 1) +x2(3 —72) — Ix + 5, (109)
and the roots are 72 = 0-500, x = 0-500, 0-192, 1-308,
72 =0, x = 0-203+i0-128, 1-095, (110)

72 = 0-333, x=0-250, 0-318, 1-184.

The last root quoted in each of the three cases of 72 is recognized as the square of the roots
quoted previously for f(x) = 0. The computation indicated gives series for the integrals
and the total values of f,, , and f,, , as functions of @, and 7 are exhibited in figures 4 and 5.
This series integration was used only for the value of Poisson’s ratio used in the experimental
work, i.e. v =0, 72 = }. The curves f,,, /5, for the two other values of Poisson’s ratio were
integrated graphically, directly:

0707 (1 __g2)¥ grdg
- f e ﬂ) , (111)
[ 02(62—%) (1—062) g»df (112)
" Joaor [(02—3)* =040 —3%) (2 —1)]
TaBLE 1

n K, K,

0 2:047 0-678

1 0-729 0-566

2 0-344 0-479

3 0-182 0-408

4 0-103 0-353

5 0-061 0-306

6 0-043 0-267

7 0-030 0-233

8 0-021 0-209
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0
04 =.flp = Fl(ao: Qs T)
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Fi1cUre 3
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~
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N
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Ficure 4. Semi-infinite space, vertical translation. ———, Reissner’s estimation of f; for 72 = 1.
. Jia
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\fzzp

0-1
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%

Ficure 5. Limits for the functions f;, f,; semi-infinite space, vertical translation; 72 =4.


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 343
sin? (a,0)  sin (ay0) cos (a,0)
Expand 20 a0 )

Tn(ag8) cos (a,0), Jo(ae6) sin (ay)
as series, and then
f" 707 (£ —§2)¥sin (a,0) cos (ay0) dﬁ_{_ L g2(62—13) (1—62)}sin (a,0) cos (a,0) dd
0 S(0) a,0 o707 [(P—4)*—04(0°—3) (02 —1)] el
| — 2:725 — 0-550a3 -+ 0-0606a§ — 0-00394§ +0-0002a8 — ..., (113)
J°'707 (3 —62)¥sin2 (a,0) dﬁ_{_f‘ 62(62—13) (1—6%)*sin? (a,0) A6
0 S(0) a,0 o707 [(07—$)* —0%(02 =) (02 —1)] ay0
= 1-2954,— 0-1964a3 + 0-0163a3 — 0-00082a} + ..., (114)
f"'m (2 —62) J,(a,0) cos (a,0) df n L g2(02—1%) (1—62)% Jy(ay0) cos (a,0) dd
0 S0) or07  [(02—$)*—04(0°—3) (02—1)]
= 2:725—0-61843+ 0-083a§— 0-006a§+ 0-0003a§ + ..., (115)
[0 =0 ) )40 [ OB (0L a0 Sey0) 00
0 J0) or07  [((F—$)*—0%(02—%) (02—1)]
= 1-295a,— 0-256a3 +0-0241a3 — 0-00124)+..., (1186)

(iv) Slope of surface. The upper and lower limits are derived on a basis of | F(a, a,,7) |
and | F,(a, ay, 7) | having a negative slope with respect to a or . The method of integration
of F, and F, is true for a<<a, and was used to investigate their slopes for increasing a,. dF;/da
changes sign at a,=1-41 for 72 = } and dF,/da changes sign at a,= 2:50.

Values of g, greater than this are not needed and the bounds of f;, f, are correct up to
a, = 1-41, but it may be fairly safely assumed that the value f,,, f,, is a close approximation
to f}, f, for much higher values of 4.

It is seen from the graphs of f,, f;, (figure 5) that at a value of a,=1-50, f,, and f,,
have become equal, indicating that the shape of Fj(a, a5, 7) as a function of  is now of the
form shown in figure 3.

The change of slope occurring has made it possible for F(a,, Ay, T) = f15(ag, T) to increase
relative to f,(a,7) so that at ay=1-50 they become equal. At higher values of a,,
| f15(a0,7) | is greater than |f,,(ay,7) |. The computed values of the displacement functions
are shown in figures 4 and 5. Figures 6, 7 and 8 show amplitude, phase, and average power
input curves when the plate is loaded with a mass.

(a) Dynamic displacements Elastic stratum

By compounding equations (50) to (53) with the corresponding ones involving —a, —f
the following are obtained as solutions to the elastic wave equation:

w —_-[ sz"‘ sinh (az) -+ 22 sinh ﬂz)] Jy(ar) it (117)
u= [7 cosh (az) ——261;/2 ] ) | Ji(#r) e‘l", (118)
zz =2y ~2A (x2—%k?) cosh (az) +g—CI§3‘—2 cosh (/J’z)] Jo(xr) €itt, (119)
Zr =2 I- 2A T 2L Ginh (az) gkc—;)—c (x2—3k?) sinh (ﬂz)] J (xr) ettt (120)

43 Vor. 248. A.
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Ficure 6. Amplitude curves, semi-infinite space, vertical translation; 72 = .
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Ficure 7. Phase angle, semi-infinite space, vertical translation.
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FicUre 8, Average power input, semi-infinite space, vertical translation; 72 = 4.
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If z = 0 is chosen to represent the lower surface of the stratum, the conditions z = 0,
w = 27 = 0, are already satisfied, i.e. the problem where the elastic stratum may slide on
a rigid foundation but has its vertical displacements restrained-there. The upper free surface
is taken as z = 4.

(1) Free waves. Equating zz = z7 = 0, z = 0, gives the following frequency equation
obtained by Marguerre (1933):

[,(x) = (x2—1k?)2 cosh (ad) sinh (f8) — afx? cosh (f0) sinh (ad)
= 0. (121)

This equation only has real roots above certain values of 7, £, depending on the stratum
depth ¢ and the number of these roots depends on 4, £, 8, 7. Change the variable x to k6, and

L,(6) = (62—3%)?cosh [y(6%—12)}] sinh [y(62—1)*]
—02(62—12)} (02— 1)} cosh [y(62— 1)¥] sinh [y(02—72)¥]  (122)

and y = ko = kryd[ry = a,R.

This function may only be satisfactorily examined graphically. When 72 = § there are
only real roots if y>n/,/2. If 72 = 1 there are real roots for any y. If the nth real root is
denoted by x, the free waves are given by ’

uo(r,2) = — 3 D, et [(2—b?) cosh («,2) sinh (8,8) —a, 4, sinh (2,8) cosh (4,2)] J; (x,7), }

wo(r,z) = 3 D, eitta,[(x2—1k2) sinh (a,z) sinh (£,0) —x2sinh (f, z) sinh (,8)] Jy(x,7).
(123)

(ii) Forced vibrations. It does not appear possible to calculate the static stress distribution
under the plate attached to the stratum surface by any simple means. The solution may be
approximated to as closely as desired by continued solution of an infinite set of simultaneous
equations but the computation involved is excessive. By applying the static stress distribu-
tion found for the plate on a semi-infinite space which, for not too shallow strata, will be
a close approximation it is possible to examine the main aspects of the case. As in the semi-
infinite case the following tentative expressions are obtained for the displacements and,
as before, they must be examined in respect to the radial boundary conditions at infinity:

5) — — Peitt = x[ (242 —k2) cosh (ad) sinh (#8) — 2af cosh (49) sinh («d) ] sin (xry) J; (xr) dx

u(r,8) = 8unmr, J;, [,(x) ’
: (124)

w(r,8) = ;Zj;m f: ak?sinh (ad) sinh l(l/ﬁzi)) sin (xry) Jy(xr) dx . (125)

Make the substitution J, (xr) = }[HY (xr)+H®P (xr)] and integrate around an infinite
semicircle in the upper half-plane, changing the signs of « and £ at the branch points in
order to make the integrand analytic. However, it is noted that the integrand is even with
respect to « and f, and changing their signs does not alter the value of the integrand. The
integral around the semicircle vanishes, as before, for 7>r,. The function /,(x), besides its
N real roots, has an infinite number of complex roots dennted by £, = {,+17,. 7, is to be
432
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positive, i.e. we are only interested in poles in the upper half-plane. This contour integration
then gives

(r,8) = —’Peil”f‘*’ x[ (2x2— k2) cosh («d) sinh (£0) — 2af cosh (§9) sinh («d) ] sin (xr,) H{P (xr) dx
“uo)= 16umr, {,(x)
=2m Y R +mi Y RY, (126)
v N

 pipt po L2y . . W
w(r,8) — Peitt f k*asinh (ad) sinh (0) sin (xry) H§P (xr) dx

16pnr, (%)

= 2m ER(“’H—m 2 R®. (127)

As before, this expression gives the Cauchy principal value of the integral

— Pei?* k2q,sinh (,0) sinh (£,0) sin (§,7) HP (€, )

(w)
& 16umryl}(€,) (128)
— Pelt k%, sinh (a,d) sinh (£,0) sin (x,7,) 21Y(x r)
(w) — 0 0\"n
R = 16umryll(x,) (129)
R — —Peltf [(282—k?) cosh («,0) sinh (8,8) —2«, 6, cosh (f,0) sinh («,0)] sin (§,7,) HP (&, r)
&= Teunr, L} ()
(130)
RO — — Peitty [(2x2—k?) cosh («,9) sinh (£,8) —2«,f, cosh (f,9) sinh («,8)]sin (x,7,) 2iY; (x,7)
= T li(,) '
(131)
Consider the term el HY (&,r) = et HPP[({,+iy,) ], (132)

which, as r becomes large, tends to

. 2 LI 2 4 .
ewt( 4 ) eil@otingr—tml — (..____..._ ) e~ eiCur+pi) @~tim

(&, +1n,) 7 m(&,+ir,) 7,
Depending whether {, is positive or negative this term represents a wave travelling away
from or towards the origin. In the upper half-plane 7, is positive and the term is thus
exponentially damped and is not significant at large distances. R{* is recognized as an
exponentially damped travelling wave. Similar remarks apply to R{. Because of the
factors Y (x,r) and Y,(x,7) R¥) and RY), are recognized as standing waves decreasing with
respect tor in the order of 3. At large distances these standing waves become predominant.
As in the semi-infinite case, free waves »; and w, must be added to make the displacements,
at a large distance, a travelling wave. At z = § the free waves are

uy(r,9) = — 3 D, et x,[(x; — §k?) cosh («,0) sinh (£,9) —a,f, sinh («,6) cosh (8,8)] Jy(x,7),

(133)
wy(r,0) = — 23 D, eitta, tk2sinh («,0) sinh (£,9) Jy(x,7). (184)
If the coefficient is chosen as D, = —2miPsin (x,7) (135)

Bumryli(x,)
the standing waves R , R are converted into waves containing the terms H{?(x,r),
H@(x,r), i.e. waves travelling from the origin. The full solution to the problem is given by
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FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 347

the Cauchy principal value of the integrals in equations (126) and (127), together with
the free waves of equations (133), (134) and (135). The ‘average displacement’ over
r<r, is obtained by replacing

Jo(xr) by  sin (xr,) [xr,.

However, it is not proposed to evaluate this integral. Enough of the complex roots §,
conceivably could be evaluated by approximating processes, but the work would be
excessive. The integral occurring in w(r,d) was partly evaluated numerically, and this
evaluation revealed that, unlike the semi-infinite case, resonances can occur. Perhaps this
is to be expected, but it will be shown that, in the cases of rotation of the plate where it is
just as much to be expected, it does not occur.

Consider the integral, the principal value of which occurs in w(r, d), and write it as

(62—12)¥sin (a,0) Jy(ab) dO

L=, o ey - - e
If y is chosen so that coth{y(—72)¥ =0, ie. (187)
2n—1
- (__27 ) (138)
then, when 6 is small,
2
coth {y(62—72)}} = —icot [77(1 —-—2%)]
. 2n—1)m 02
= —1cot [L____)_ (1 ——5;2)]
2n—1)mw 62
= ————~( 5 ) 97 (139)
to the order of 2. If ¢ is a small quantity,
e (— 12)5’ aoﬁdﬁ (62 —72)%si sm aO 0) Jo(af)) 6
BT —I—'I’ coty:l
The first integral, being of the order -1, diverges, indicating resonance when y = (2n ;Tl) m
i.e. .
_(2n—1)m _ (2n—1)mk
4 = 2r  2n
_(2n—1)m
o=
. _(2n—1)m( E(1—v) )’}
ie. p=""35 (p(l—]—v) =) - (141)

These resonant frequencies are equal to those of a rod of the elastic material fixed at one
end, free at the other, and constrained at the sides so that all lateral movement vanishes
there. Itis easy to see that this result holds for any axisymmetrical vertical stress distribution
which is finite at the centre. The stress distribution under a rigid plate falls into this category
and thus a weightless rigid plate on the surface of the elastic medium will resonate at these
frequencies.
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A solution may be obtained for the case when all displacements vanish at the lower
boundary, z = 0. This is so if the elastic medium is securely stuck to the base, preventing
sliding, but it is to be expected that it will not differ very much from the previous case.
Choose a solution with four arbitrary constants illustrated by

A, x ez AAxe“Z C xe ﬁ"‘ x ef

— 1 ]ZZ + 2h2 /57 16) Z:IJ (142)
Aae 2 A,aex* C,x2e bz (C, x2ef

= lhz - 2/22 —= 72 - Zkz Jo(xr). (143)

It can then be shown that the solution, when all displacements vanish at the lower boundary,
is given by

aid) dx -+ free wave,

Peist f [#% cosh (oa?) sinh (f0) — af cosh (§6) sinh (ad)] sin (xr,) J,(

w0 =, BL(x)
(144)
ly(x) = 2(x2—~1/c2)—— [(x2— ££2)2 4 x*] cosh (ad) cosh (49)
202 1 (42 12121 Sinth (ad) sinh (£5)
R (g S (145)
As x>0, ly(x) = 412 cosh (ad) cosh (49), (146)
and the integrand becomes 40;:22}:}%2; iCnO};}Eozé}aa)cro. (147)

Choose coth [y(—72)}] = 0, as before, and the integrand is of the order x~! and the integral
diverges. It follows that the same resonant frequencies occur whether the stratum is free
to slide on the lower boundary or is completely restrained there.

(b) Static displacements

It has been intimated that the static vertical displacement of a rigid plate on a stratum
involves two intractable integral equations. However, close bounds may be obtained to
the displacement by using the principle evolved earlier. Take the limit of expression (125)
as &, k— 0, and we have the static displacements due to the stress distribution of the static
semi-infinite case. It will be shown, and is expected physically, that this stress distribution
is greater at the outside and smaller at the centre than that caused by a rigid plate on the
stratum. This stress distribution applied to the surface of a stratum gives displacements of
the shape shown in figure 9. Take the limit as %, £ — 0 of expression (125) and it is found that

P(A+2pu) [ sinh?xsin (x/R)dx

w(0,9) = dmury(A-+p) Jo R(x+coshx sinhx) (x/R)’ (148)
_ P(A+2pu) (sinh?x sin (x/R) Jy(x/R) dx
w(ro, 9) = dmprg(A+u) Jo R(x+coshx sinhx) (x/R) ’ (149)
_ P(A+24) [~ sinh2xsin?(x/R) dx
w(9) = dmury(A+up) Jo R(x+coshx sinhx) (x/R)?’ (150)

where R =0/r, and w,(d) = ‘average’ displacement. (151)
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There appears no simple way of evaluating these integrals because of the difficulty of
determining the complex poles of the integrand. Write

_P(A+2p) K, 2 (= sinh%xsin (v/R)dx
w(0,8) = 8ur,(A +,u) > 17 aR)y (x+coshxsinhx) (¢/R)’ (152)
_ P(A+2u) K J‘ sinh? (x) sin (x/R) Jy(%/R) dx
wired) =5ty K2=1R),  (xtcoshxsinhx) (x/R) (163)
w0, (8) = P(A+42u) K, 2 (< sinh?x sin? (x/R) dx (154)
%) " Burg(A+px) > %" @aRJo (x+coshxsinhx) (x/R)2’
K. = 2 U“I’ sinh? x sin? (x/R) dx J‘ sin? (x/R) dx:l (155)
37 mRL)o (x+coshx sinhx) (x/R)? (x/R)2 1
7 r
w (r5) —\ /
}
FIGURE 9
1-0
"
0-8
0-6
peripheral displacement, K,
average displacement, K
central displacement, K,
0-4
0-2
0 2 4 6 8 10 12
R =§/r,
Ficure 10. Elastic stratum stiffness factors, vertical translation.
. sinh? x
where @ is a number large enough to make (*Fcosh x sinhx) ~
[ f sin? (x/R) dx J‘ (sinh? x —x —cosh x sinh x) sin? (x/R) dx 156
=R (x/R)? (x+cosh sinh x) (x/R)? ] ase

sin? (¢/R)dx 7R v
Jo e = (157)
® 2(x+ cosh x sinh x —sinh?x) sin? (x/R) dx

and then Ky=1-— mR(x+ cosh x sinh x) (x/R)?

(158)
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This latter integral was evaluated numerically. The factors K, K, are treated similarly
and the three factors are shown in figure 10. Remembering that the slope of the surface is
opposite that of the vertical dynamic case, it follows that w(0, d) is the highest point, and
using the reciprocal theorem, as before, it follows that K for a rigid plate lies between K|
and K. The evaluated results show that, as long as the stratum is not too shallow, K, and
K, are close together and we have reasonable bounds for K. It is to be expected that K will
be much closer to K5 than to K, and experiment indicates that K is a good approximation
to K even for very shallow strata. As R ranges from 0 to co these factors range from 0 to 1.
When R = o0, K = 1, the result is that of Boussinesq for a semi-infinite elastic space.

4. ROTATION ABOUT A HORIZONTAL AXIS
Semi-infinite elastic space

The solution to the case when the rigid circular plate attached to the surface of a semi-
infinite elastic space is rotated about a horizontal axis by a couple follows from the sum of
the solutions given by equations (8) to (10) and (14) to (16) with m = 1:

—A(x) e~ C(x)fe F=70J,(xr) cos , .
“ ——[ (lz2 & k2 8(r )sm .‘9 et (159)
az p
,:A e” x)/é’c ZIJ xr) 51Crz)s it (160)
—-az 2 o—fz
[A(x)};e (x)/accze J(wr )cps g eint (161)

(@) Static solution

Expand above solutions in terms of 4 and £ to thé first order, put (—A/k2+CJk?) = 4,,
(C—A4) = C| and take the limit as #,£— 0 and the static solutions follow as

,0J,(xr) cos

—

’ =_A1(x)+clgc) Z]e 1) s, (162)

) i—Al(x) —%’QZ] e ) _SiC‘LS 9, (163)
w:F—Al(x)x—NCQ;(x)—CI(;) ] ey (ar) S, (164)
[A +2ﬂ{ () N 19? G (%) +Cl<";) "‘z}] e Jy(ar) 20, (165)

72— ﬂ[— 2xd, (%) + 012(;‘) -Zcé(x) N CQIx("‘) fcé(x)] e ‘%;ﬁf 0, (166)

o ﬂ[Al(x) AN 02 g 200G o i) ji;sﬂ’ 167)

where N=Eih

_ (A+34) (168)

(A+um)
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FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 351
On the top surface, z = 0, the shear stress is to be zero everywhere, i.e.

F2=20=0 (z=0),

. —44, %%
1.€. Cl == (N—-l]_) )
and, with this value of C,(x),
+1 Cos
w(r,0,0) = A,(x) 5 {34} Sar) v (169)

22(r,0,0) = —2(A+p) 4, (x) x2J, (xr) S

. (170)

Change 4,(x) to 4,(x) and generalize the solution by integrating from 0 to co with respect
to x:

w(r,0,0) f Ay xJ(xr)dxCiorf , (171)
z2(r,0,0) = %—/12——'_)—’@] A,(x) x2J,(xr) dxc.os 0. (172)

If § is the angle of rotation of the circular rigid plate about a horizontal axis the following
boundary conditions are still to be satisfied:

w(r,0,0) =grsinf (r< ro),}

z2(r, 0, 0) = 0 (r>ry). (173)

The angle @ in the horizontal plane is measured from the horizontal axis of rotation.
These last two boundary conditions are satisfied if 4,(x) can be found to satisfy the following
dual integral equations:

ijz(x) xJy(xr)dx = ¢gr (r< ro),l ,
: (174)
fo A,(x) 2T, () dx = 0 (r>1,). ]

These two equations are recognized as a special case of the two dual integral equations of
Busbridge, equations (21) to (23). Noting that

b i |
') =nt and J(x) = (%) (ilg—af—-cosx)

. 401, [sin (x7
it follows that Ay(x) = ,,,gizo[ x(r ) —cos (xro):l - (175)
This value for 4,(x) gives

— /l+ K) 4¢rysind f [sm x7,)

zz(r,0,0) = (/1—1-2#) - | —cos (xro)] Jy(xr) dx. (176)
It follows (Watson 1944, p. 405) that

—2u(A+-p) 4¢rsind

22(73 0, O) = (177) !

(A+2u) m(r§—17)
This stress distribution is to be expected as it is a superposition of a linear increase with

respect to 7 on the stress distribution of the vertical translation case.
44 » Vor. 248. A.
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If M is the turning moment necessary to rotate the plate through an angle ¢ about the
horizontal axis, then

_ —2u(A+p) 44 (2 r3dr
M = W Slnzﬁdﬁf 7'0-——7'2)%’ (178)
L6¢u(d+p) 1§,
M="50 2
3M

= . 179
¢ 16pr3(1 —12) (179)
This simple expression should be of interest in discussing the rocking of towers on circular
bases. It could be used as a criterion of stability of a tower by equating the righting moment,
as given above, to the overturning moment caused by the weight of the tower.

(b) Dynamic solution
With m = 1 in the solutions, equations (8) to (10) and (14) to (16), the following are

obtained:
Axe“z Clx eﬁZ&Jxrcos
u—[ ( ( )/f; a(r )sm 0 eitt, (180)
_[4(x) e C(x) ﬁ’e 4 J(xr S g i (181)
72 ——cos ’
—az B
wz[_’A(x)ﬁo;e C(x)x e” Z:IJ Cosﬁel[)l (182)
2 2e-8
Zz—ﬂl:A (’I 2}:‘) e~%r | _ﬁx_g___z:lj( )Cosﬁellﬂ (183)
5 ﬂ[A__?'ﬁEﬁf C(x) ﬁ(;fﬁ p’k?) 0 (xr e, (184)
. — Alx Qo e~ %z 42 X7) Sin i
= B 0w bt ) ﬂ]-‘—(;l_cos””" (189)

Because the same function of x appears in both Z and 16, it is possible to choose C(x) in
terms of 4(x) so that both 27 = 0, 76 = 0, z = 0.

As in the vertical translation case 4(x) is chosen to satisfy the normal static stress on the
free surface z = 0. Take this stress distribution as the static stress distribution, just evaluated,

ie. —~  Krsind
Express zz by the Fourier-Bessel theorem, and
zz —f Jy(xr) xdx U‘fOKpsmﬁJl(;cso% ,odp (187)
70 2 é
- ’?(r—f(ﬁ@gﬁ — (" 137 (a7, sin g) sin? - dyp. (188)

This integral is now the special case of Sonine’s first integral, equation (24), where

% .
z = (xry), p=1,v=—4%. Using I'(}) = #? and Ji(y) = (%?/) (il—gg—cosy) , it follows that

I = ZQ[S—i{l;(xﬁ)—‘cos (xro):l. ‘(189)

x L
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FORCED VIBRATIONS OF A RIGID CIRCULAR PLATE 358

The displacement w(r, 8, 0) follows directly and is examined by contour integration and
a free wave added to make the whole a travelling wave at infinity. The displacement is

Krysin 0 ei#* [ ak? [sin (xry) — &7, cos (xry)] J; (#r) dx |
4u .[ 0 xro f(x)
__inKrysin 6 eifta, K*[sin (x,7,) —x, 75 €08 (%,70)] Ji (%, ro)
dpx 1o f' (%))
Change the variable x to § and ‘average’ the displacement over <7, in the same manner
as before and thcn

w(r,0,0) =

(190)

f (02——12)* [sin (a,0) —a,0 cos (ay0)]2dd
(a0)°£(0)
19M (03 —72)} [sin (ay0,) — ay 0, cos (a,6,)]>
1613 17(0,) (a00,)*

ba= 16/mr0

= (fla+ 54)- (191)
) / —.fla
0‘4 /4
, J2a
0-2 ]
//
0 05 10 15

Ficure 11. Semi-infinite space, rotation in vertical plane; 72 = 1

The Cauchy principal value of this integral is implied by the contour integration. ¢, follows
by putting 2J,(a,0) in place of [sin (a,0) —a,0 cos (a,0)]/(a,0)? in ¢,. If ¢ is the true angle
of rotation of a rigid plate then, as before, ¢, <¢<g,. Only ¢, has been evaluated.
Evaluation follows exactly as before. Write
I :f” (62—12)} [sin (a,0) —ay0 cos (a,0)]2dd
S0) (a6)°
J’ (62—12)} [sin (a,0) —a,0 cos (ay0)] sin (a,6) d6
S(0) (a,0)°
_f (62—72) [sin (a,0) — ay0 cos (ay0)] cos (a,6) df
| 0 (6 (a,0)°

These two integrals are evaluated by replacing the single terms sin (a,6), cos (a,0) by eie?
and integrating these new integrals around the previous contour separating out the required
integrals as before. The evaluated results are shown in figure 11.

(192)

44-2


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

354 ~G. N. BYCROFT ON THE

Elastic stratum

If the plate is attached to the free surface of an elastic stratum and rotated the displace-
ments follow as before and

Kr,sin d eitt J‘“’ ak?sinh (ad) sinh (£6) [sin (xr,) —xr, cos (x74)] J; (%r) dx

w(r, 0, 0) = du 0 [,(x) xr,

+free wave.
| (193)
It is interesting to note that resonance does not exist in this case. An analysis, as carried out
for the vertical case, will reveal that for any value of § the integrand close to § = 0 is of the
order § and thus does not diverge. Ifthe integrals are expressed with respect to § rather than
x it is seen that the frequency only occurs in factors such as [sin (a,6) —a,0 cos (a,6)]/a,b,
and it is these factors that substantially determine the frequency response.

5. ROTATION ABOUT A VERTICAL AXIS

Rotation of the plate about a vertical axis is the simplest of the four modes of oscillation
because no dilatation in the medium exists. The plate on a semi-infinite space has been
solved exactly by Reissner & Sagoci using a system of oblate spheroidal co-ordinates. It is
solved again here by the approximate methods of this paper, for comparison. The plate on
an elastic stratum, mentioned but not solved by Reissner, is considered also.

Semi-infinite elastic space
The solution of the wave equation given by equations (11) to (13) when m = 0 is

uy =0,
vy = ——B.;l(xr) e-Pzeint, (194)
w2 = O.

This solution makes all surface stresses zero except the shear stress zf.

20— ﬂBﬁ'}{l(x‘r) e—hz eift, ' (195)
The only boundary condition still to satisfy is that the stress zf over 0<r<(r, is that of the
static case. By using the two dual integral equations, as before, it can be easily shown that
if M is the static twisting moment applied to the plate then the stress distribution is

7 - 3Mr
T dmrd(ri—r2)t
It is to be noticed that the factor r(r§—7?)~% also occurs in the case of rotation about a
horizontal axis, and the two rotation cases have much in common. The displacement
caused by this stress distribution is . »
3M eitt f‘” [sin (x7y) —xry cos (x79)] Jy(xr) dx
dumrt Jo - far, )

(rgro); 20=0 (r>n). (196)

o(r,0) = (197)

There are no free waves to be added because free waves cannot exist. In equation (195)
put zf = 0, indicating no surface stress, and it follows that B(x) = 0, i.e. v, = 0. This is
further emphasized by the resulting integral for v(r, 0). The residue at the singularity x = +£,
i.e. # =0, is zero and no doubt arises as to the value of the integral.
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‘ Average’ the displacement as in the vertical rotation case, and the ‘average’ angle of
rotation ¢, becomes

9M eitt (= [sin (a,0) —a, 0 cos (a,0)]? dﬂ
— 198
P 8umrd f (a,0)3 (62—1)} (198)
The angle corresponding to the displacement at the periphery is given by
‘¢ _ 3Meiﬁ‘J’°° [sin (a,0) — (a,0) cos (a,0)] J;(a,0) d6‘ (199)
P aumd ) a,0(62—1)*

It follows that the angle ¢ of a rigid plate is such that ¢, <@ <¢,. The integrals have an
imaginary part, representing energy lost to infinity in the form of body waves shown in the

1 ©
integral by f , and a real partf . The angles are now expressed as
0 1

el pt

¢a= ,ur?' (.fla if;la)’ - (200)
by = Mw%i (S1pt+1f2p)- (201)

It is necessary to evaluate

f [sin (a, 0) —ayl cos (ay0)]2d0
—1)# (a,6)°

J‘ [sin (a, 0) —ay0 cos (ay0)] sin (a,0) dl9__J‘°° [sin (éoﬁ) —aybcos (ay0)] cos (a,0) db
- (02 —1)} (a,6)° (62—1)} (a,6)?

These integrals are treated separately. For I, integrate J; around the general contour
changing the sign of f at x = —1:

© [sin (a,0) —a,0 cos (a, 0)] eiafd df

J, = 203
1) . (62—1)% (a,0)3 (208)
The integral around the semicircle vanishes and the residues at +1 are zero, i.e.
. (0—1) [sin (ay0) — a0 cos (a,0)] ei®? '
1 ( 0 0 0 = 0. 204
ey @+ 1) (0—1)F (2,0)* (204)

This contour integration yields

_ _ifl [sin (ay0) —a,0 cos (a,0)] sin (a,0) d¢9+fl [sin (a,0) —a,0 cos (ay0)] cos (a,0) df
(1—0%)% (a,0)* (1—0%)% (a,0)° '

(205)

Similarly,
~_ifl[s'in (ay0) —ay0 cos (a,0)] cos (a,0) db f [sin (ao0) —a,0 cos (a,0)] sin (a,0) dl9
(1—0%)% (a,0)? (1—0%)% (a,0)* (206
206

These are integrated by expanding the terms containing (a,0) as a power series and then
using the substitution § = sin .
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Finally, :
I = (0-524 + 0-105a3 — 0-0332a4 -+ 0-004a§ — 0-0002a + ...)
—i(0-074a3 — 0-0118a3+ 0-0009aj— 0-00002a3+...), (207)

ipt

and if we write 4, — -A.flfg— (Fratifos), (208)
0

then Jia = — 0-187—0-03763+ 0-0119a}— 0-00133+- 0-00006a3, ) (209

Soa = 0-0264a3 — 0-004243 + 000031} — 0-0000143. l

7

The integral for ¢, may be evaluated similarly and the computed values are shown in figure
12. These two bounds for ¢,, ¢, are close together up to a, = 2 and are seen to enclose the
true ¢ as calculated by Reissner & Sagoci. The variation of these functions with a, is seen
to be very similar to the case of rotation about a horizontal axis, this frequency variation
being substantially effected by the common term

[sin (ay8) —a,0 cos (ay0)]%/(ay0)>.

iy ——
02 o , '\ J1a
: "'flp
. ) .fZa
01 | / = "
0 05 1-0 1-5 2:0
%
FicURE 12. Semi-infinite space, rotation in horizontal plane. ---- Sagoci’s exact solution.

Elastic stratum
It is convenient to write §, = (k2—x2)* = if and to obtain as a solution from equations
(11) to (13)

U, = 0, A
vy = [A(#) cos (8,2) + B(x) sin (§,2)] Jy (xr) €2, l (210)
w, = 0.

Such a solution already satisfies the condition that all surface stresses are zero except zf.
If z = 0 is chosen as the upper free surface and z = 4 is secured to a lower rigid stratum the
following lower boundary condition is to be satisfied v = 0, z = 4, i.e.

A(x) cos (f,8) + B(x) sin (§,0) = 0, (211)
and then o(r,z) = A(x) [cos (B, z) —cot (§,8) sin (£, z)] J, (xr) €i?", (212)
20(r, z) = pA(x) [—pysin (B,2) —py cot (§,0) cos (f,2)] Jj (sr) €', (213)
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Generalize these solutions, and
o(r,0) = ei#t f " A(x) J(xr) dx, (214)
0
2B(r,0) = et [ " A (x) By ot (6,8) Jy(xr) d. (215)
’ 0

Apply the static semi-infinite space stress distribution, i.e.

Kr

Z0(r, 0) =

Expansion by the Fourier—Bessel theorem, i.e.

Z0(r, 0) — f (x7) U")K/JJ (xp)pdp]d

RCERE
:f Kro[sin (xry) —xry cos (xry)] Jy (xr) dx (217)
0 er
determines A(x), and the angles of rotation become

4 = 9M et [sin (ay0) —a,0 cos (ay0)]2sin [ay R(1 —62)¥] dO (218)

T s lo  (0,0) (1—0tcos[a,RO—69F]
4, 3Me11”f [sin (ay0) —ay0 cos (ay0)] J;(a,0) sin [ay R(1—62)}]d6 (219)
P 4y a,0(1—62)% cos [a, R(1—0?)}] ’ :

_ 3Mei# = [sin (wry) —xrycos (xry)] Jy(xr) sin (£, 0) dx

o(r,0) = 4umrg f xrofy cos (£, 9) (220)

In order to specify bounds for the true angle ¢ of a rigid plate it is necessary to examine
this case further than is proposed. There are two effects to be considered. First, the pro-
pagation of waves outwards tends to make angles at the centre greater and angles at the
periphery less with increasing a,. Secondly, because it has been assumed that the stress
distribution is that of the semi-infinite static case, the effect of a decreasing stratum depth
is to decrease angles at the centre and increase them at the periphery. Without an actual
evaluation of the displacement v for various g, R, it is not possible to tell whether ¢ will lie
between ¢, and ¢, or between ¢, and the angle at the centre. However, it is possible to say
that over some certain stratum depth depending on a,, ¢,<¢<¢,. However, the integrals
arising in a more complete discussion of this problem are tedious. The integral arising in
¢, is-the only one which permits of a straightforward evaluation and is the only one which
has been considered. It illustrates qualitatively what happens and experiments show that
quantitatively it is a very reasonable estimation.

Whereas in the semi-infinite case free waves cannot exist they may exist in the case of
a stratum. Equate surface stresses to zero:

cos (4,8) = 0,
cos [a,R(1—62)}] = 0,

. _(2n—1)2ﬂ2:]*
6, — j:[l sy

(221)
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The free waves are then given by
N
0(r,0) = X A, 5(0,). (222)

There will be a finite number N of these waves depending on ¢, and R.

As before, the solution must be examined in order to determine if the addition of free
waves is necessary to make the displacements at large radius into travelling waves. This
may be done at the same time as the integral is evaluated. In the expression

o) _ 3Meitt [sin (a,0) —a,0 cos (a,0)] sin [ay R(1 —62)¥] J,(af) A6
v 0) = fo a,0(1 —62)% cos [a, R(1 —62)}]
SMei?t]

R (229)

substitute Ji(af) = 3[HP (ab) + H{?(ab)],
1 (= [sin (ay0) —ay0 cos (a,0)] sin [a, R(1—62)¥] H{(ah) df
== : . 224

and 2) a,0(1 —02) cos [a, R(1 —02)%] (224)
Integrate I around the previous contour, changing the sign of (1 —62)* at § = — 1. However,

the integrand is even with respect to this radical, and the change of sign makes no difference.
The integral around the semicircular part of the contour vanishes if a>a,. If H®(af) had
been used in place of H{"(af) then it would be necessary to integrate around an infinite
semicircle in the lower half-plane in order to secure vanishing of the integral on the circular
part of the contour. The integrand has poles at real values of § corresponding to the free
waves and also at imaginary values of 6, i.e. when

cos [ayR(1—62)}] = o,
- —1)2 4213
ie. aoﬂn=[a3—(—2—7£@%7—7—] . (225)

When 6, is imaginary only the positive sign is to be taken and when 6, is real, both signs.
Call the N real roots 6, and the imaginary roots ,, = ix,, and, if R refers to residue, the
contour integration yields

2m 2 iX '
sin (ay0,,) —a,0,,cos (a,0,,)] H{" (ab,,
Re,,, =[ ( 0 ) OR(aOﬁ"SZO )] 1 ( ), (227)
__ [sin (a0,) — o8, 05 (a,0,)] 2iY, (af),)
Ry = Rla,0)? . (228)
Consider the R, terms. These contain the factor
¥
HP(af,) = HiP(aix,,) 5 () etemn—snd (229)

as a becomes large. These factors decrease exponentially with distance and rapidly become
negligible compared to the R, terms which decrease as a™*.
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The term Y (af,) which occurs in R, indicates a standing wave decreasing with respect
to distance a as a ¥ and consequently becomes the preponderant term at large a. Convert
this standing wave at infinity to a travelling wave by the addition of the free waves

N
0= 3 A, (ab), (230)

4 = —7i[sin (ay0,) —ay0, cos (a,0,)]
" R(ay0,)? '

The wave factor occurring in the addition of these two waves is

~i[J(ab,) —iY,(af,)] = —iHP(af,),

(231)

and this is a wave travelling outwards. The final solution for the displacements when r>17, is

o, 0) = % ["im=:+1 [sin (a,0,,) —a, Iz,gaz%i ()c;o 6,)] H{(ab,)
i 3 X [sin (ao0,) — ag{ﬁ(,; E(;j)(zaoﬁn)] i¥,(at,)
_ i,gl [sin (a00,) _;al(() 505332 (406,)] Jl(ab’n)], (232)
g, =20 MR rs g, (233)
oo 137_[ ‘[ﬁmgﬂ [sin (a,0,,) —a, %ﬂ( Z:; ,Slg 0,)] H(ay6,)
i % [sin (a,0,) *aﬁ,é::;hggoﬂm i, (aoﬂn)]’ (234)
f%__[ [sm (a90,) — a;eﬁ(nacoz)(foﬁn)]_Jl(aoﬁn)]. (235)

g, is imaginary, H{"(a,4,,) is real, and it follows that all the terms in J1pare real and those
in if,, are imaginary. Tables of Hankel functions of imaginary arguments are available
(Jahnke & Emde 1945) and the series may be readily evaluated. The infinite series in 4,
converges slowly, and it is convenient to sum it as far as m = (@ —1) and to approximate
to the remainder. It is required to approximate to '

—_ - [Sin (aoﬁm) —aoﬁm cos (aO 6m>] H§l)(a00m> e

=2 3 R(a,0,)" : (236)
—1) 3
a0, = +i [—@m———aﬂ . (237)
If m is large enough, i.e. m>Q ay0,,= me!#’ (238)
and '
R [2Rsinh [(2m—1) m/2R]— (2m—1) mwcosh [ (2m—1) n/2R]] H{[i(2m—1) 1r/2R]
ov4 2 (@m—1)2n

(239)

45 ' Vor. 248. A.
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If m is large enough
w[i(@m—1)77 . —2R}exp[— (2m—1) 7/2R]
h 2R - m(2m—1)% (240)
. —8Rt 2 1 4R} 2 1
It may be shown that
f@ (27’)7,——1)”g <m§Q (2m_1)%<fQ (Qm__?))g: (242)
s 1 L1 1 1
mgq (2772—_1_)’3‘$'2“I:(QQ_l)%+ (2Q_3)1}]? (243)
e 1 1 1 1 -
,,ZQ (2m—1)%;5[(262—1)%+(2Q*3)%_ : (244)
05

| “Up-05
/ /\fzp
\ﬁ R0

0 1 2 ' 3 4
Ficure 13. Elastic stratum, rotation in horizontal plane.

@ was chosen so that the approximation represents S, to within 5 %, and then the overall
error in f,, is much less than 5 %,.

The evaluated curves for different a, and R are shown in figure 13. The interesting fact
that is shown by these curves is that resonance does not exist. Neither does it exist in the
case of rotation about a horizontal axis. Instead, a maximum in f; occurs and it occurs at
a frequency close to the first resonant frequency of a rod of the medium equal in length to
the depth of the stratum, fixed at the bottom, free at the top, and oscillating in torsion. As
R becomes smaller the frequency at the maximum point moves closer to this frequency
and the amplitude of the maximum becomes greater. The limit is obvious and is to be
expected. 0, is zero until a certain frequency given by a,>7/2R is attained. There are no
free waves below this value and no energy propagation. It can be easily shown that this
critical value is the first resonant frequency of the rod just mentioned.

Itis probable that further maxima occur at frequencies close to @, = (2m—1) 7/2R. When
the stratum becomes deep this case rapidly approaches that of the semi-infinite case.
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R = 10, as can be seen from the curves, is very close to the semi-infinite characteristic, and
it is interesting to note that the sum of the free waves in the stratum has now become the
imaginary part of the integral of the semi-infinite case.

Because of the great similarity in the two cases of rotation it is to be expected that rotation
of the plate about a horizonal axis on a stratum has similar characteristics. The experimental
investigation confirmed this.

6. HORIZONTAL TRANSLATION

Of the four modes this is the most complicated. Shear is obviously the main effect, but
dilatation also exists and the results vary a little with Poisson’s ratio. In order to effect a
solution by the methods of this paper the boundary conditions must be simplified. It will
be shown that horizontal forces over r<r, cause not only horizontal translation but also
rotation of the surface. A rigid plate, subject to a horizontal force, translates horizontally
but also rotates in a vertical plane. It is to be expected, and is observed experimentally,
that this rotation is small. The sum of the three solutions, equations (8) to (16), is used in
the solution to this case. '

Semi-infinite elastic space
(a) Dynamic case
—A(x) e*? x)e bz HJ (%r) cos

U +ug = | P + sin deit, (245)

b vy = iA(x});—az_C(xize—ﬂz:l Jl(rxr) _s;r:)sﬁew, (246)

w0,y = :A(x)ho;e‘“Z_C(x);;;e‘/’z T, (x7) Cosb’ell" (247)

Iy A( )(4—2124“2) gmaey CX) 207 i’fe () Cosaew, (248)

P210g = /t:A(x) ;2; e @ ;};xz) < aJa(x’) oe, (249)

By =Iu[——A(x;l22a e‘“Z+C(x (ﬂ;—];xz e /’z:l J, (xr) _31(1:10S it (250)
For convenience these solutions are written as

U5 = Fi(x,2) %s&sﬂeiﬂ, (251)

Vs = —Fy(%,2) ﬂrx—’") _Sig)s Oeir, (252)

wy, 5 = Fy(x, z) J, (ar) ;Orfaew, (253)

22,5 = Fy(x,2) J, (x7) gfrf feirt, (254)

72100 = —Fy(x,2) ) b(rxr) ;’i"rf'eew, (255)

By = Fy(x,2) 2 jlcll e (256)

45-2
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Add on the second solution, i.e.

B(x) Jy(xr) o~z

2T T2 Ty sin felt,
—B(x) 0J, (xr) sin , .. ¢ (257)
= e—Az ipt
2= T —cos A
wz = O,

and the solution on the free surface z = 0 becomes

oJ, (xr Jy(xr)7cos , .
ulr, 0) =[ A, 0) 2107 4 B TN 08 1 (258)
J B(x) 0J in ,
o(r, 0) =[——Fl(x, 0) 1(:6’7’)_ £2x) 16(:07’) jlcrt)sﬁelpl’ (259)
w(r, 0) = Fy(, 0) Jy(xr) > fei#, (260)
22(r, 0) = Fy(x, 0) J; (x7) Cios eit, (261)

(Ula(xr ) _#PB(x) Sy (%1)7 €08 i (262)

x2r sin

72(1,0) =| —Fy(x0)

J, (xr) ,u,b’B(x) 0J,(xr)7] sin
x? dr | —cos

2(r,0) [F( )4 feir, (263)
It is possible to equate zz = 0 which expresses C(x) in terms of 4(x) and then to choose
A(x) and B(x) so that the shear stress over r< r, is some particular distribution. If this is
done then it is easily seen that w(r, 0) is finite and changes sign with 7, i.e. a rotation of the
surface takes place. The expressions for the displacements then involve the characteristic
equation f(x). A great simplification results if, instead of equating zz = 0, we equate
w(r, 0) = 0 everywhere. zz is now finite, meaning that vertical forces have been added to
keep the surface flat. It is observed experimentally that the vertical displacements caused
by horizontal forces are small, and the effect on the horizontal displacements of preventing
these vertical displacements will be this degree of smallness squared. Put w = 0, i.e.

Fy(x,0) = 0,
Clo) = A(ﬁ/:;ﬁkz (264)
and choose Fyx) = —2/!;:214(96) #C(x) /)g;: +£%) _ ﬂﬂfz(x) , (265)
pe. B(x) — f—‘%{ﬂ@.

Tt can be shown from the recurrence relations of Bessel functions that

I, () | Jy(a)
ar T

+ = xJy(wr). (266)
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The shear stresses follow as
72 = — F,(x) xJy(ar) ;’f’rf feit, (267)
20 = F,(x) xJy(xr) _S-I;S fein, (268)

There is a further difficulty regarding the shear stress distribution to assume. A consideration
of the static solutions formed by taking the limit of equations (258) to (263) as p— 0 will
show that the previous methods will not apply in this case without further simplifying
assumptions. In equations (258), (259), (262) and (263), put

B(x)

| Fi(x,0) = —xz—: Fy(x,0) = ‘Egz(—xl' (269)

In the static case it follows that the displacements and stresses are now of the form

CcosS

u = Fy(x,0) xJy(xr) sin g, (270)
v = —F,(x, 0) xJ, (xr) jl(is f, (271)
72 = — F,(x, 0) 2J, (xr) ;"ns 6, (272)

20 = F,(x,0) 22, (xr) " @ (273)

The boundary conditions to be satisfied are that

u=dsinf (r<r,y),
v=dcost (r<r,), (274)
Z=20=0 (r>r,), |

where d is the horizontal displacement of the rigid plate. Generalize equations (270) to
(273) by integrating with respect to x, from 0 to co, and the boundary conditions are
satisfied if F(x, 0) can be chosen so as to satisfy the dual integral equations

f CF(x,0)xdy(xr)dx =d  (r<ny),
0 (275)

f : Fy(x,0)x2y(xr) dx = 0 (r>7,).

These are the same two dual equations as occur in statical vertical translation and they
yield a stress distribution given by,

o Ksind Kcost
72 =

= 2 Z?:(rg—ﬂ)% (r<ry). (276)

This solution makes both zz and w finite and does not fulfil the condition w = 0 as already
assumed. However, we will take it as being a reasonable approximation to the static stress
under the previous conditions assumed.

45-3
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Return to the dynamic equations (267) and (268), and when <7,
o 1 ipt
71z =\ F,(x)xJ,(xr) dxsinfeit’ = % , (277)
ipt
% f (%) &, (x7) da cos f ettt — %":S% (278)
By the Fourier—Bessel theorem,
K © .
i r<re) = fo sin (wry) Jj (x7) d. (279)
] u
06
T a
4 .
j \v
Ficure 14
Comparison of coefficients yields ‘
B(x)  Ksin (xr,
352) = ﬂ/),i 0), (280)
A(x — Kxsin (xr
;52) = kzoc( 0)’ (281)
C(x — Kf'sin (7,
éz) — ﬂk2(x< 0) (282)

If P is the horizontal force on the plate, then K = P/2nr, and the displacements become

Peitisin g J‘ l: xasin (xry)  fsin (x7y)7dJ; (a7) +sin (xry) Jy(xr) dx 283
2mpr, k%o k2x dr Par ’ (283)
Peiticost f [x sin (xry)  fsin (xry)7 Jy (x7) i sin (xr,) 0J,(xr) dx 284
T 2mur, k2o k2x r fxor ' (284)

‘Average’ these displacements in the direction § = 17 in the same manner as before, i.e.
integrate the displacement of a point multiplied by the stress acting at the point over the
arear<r, IfU,is the ‘average displacement’ of the plate in the direction of the horizontal

force, i.e. § = }m, then ‘
UP-—J dﬁf I:Pr usmb’—l—vcosﬁ)]. (285)

2mry(r§—r2)%

The order of integration may be 1nterchanged and finally

ipt 2
_Pe f [x o —l—-!]sin2 (xr,) dx

~ 4 k2ax

_ Peitt porgr— (62— r2)d (g2—1)} sin? (aoe) g
—4,uﬂr0f [ 62—72 %J (286)

a
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There are no free waves to be added. Equate all surface stresses to zero and all the
displacements vanish.
Evaluation follows as in the previous work. Consider

62— (62—12)} 02—1% ‘“0"5111 (a,0) dé
J= f_w[ (62— 72)% ) _1 %:I : O . (287)

Integrate J around the infinite semicircle contour, changing the signs of the radicals at
the negative branch points, and

02— (G2—r2 (02—1)F 1 sin?(a,0) df
I= f[ = 72)% +(2—1)%] ay0

_[(70sin (2q,0) dO 2y3 50 (2a,0) A0 sin (2a,0
[f 207t 24,0 +f (=0 =00 +f(1—mﬁ2%a
I:J 0%sin? (a,0) dé’+ 1(1—62)}sin2 (a,0) dé’_l_flsm2 (ay0)dl
(12— 6’2)5‘%6’ a0 o (1—02)%ay0]"

(288)

These are integrated by the substitutions § = 7siny, § = siny’.

7-2
Y%
02 %\’\\\
O.
-~"“‘::::“‘==:>‘
O N 72
' A
-
/ } y
“Jla
0 05 1-0 15 20

“o
Ficure 15. Semi-infinite space, horizontal translation.
Finally,
$m(3+72) —(0-3927%+0-655) a3+ (0-065575 4 0-0913) a}
I=] —(0-0055078+0-00701) a§+ (0-0002771°+0-00033) a§
—(0-000017'2+0-00001) al®+
(0-66773+1-333) a,— (0-1777°+ 0-266) a3
—1 + (0-020377 4 0-0271) a — (0-00137°+0-0016) af |. (289)
+(0-0000527114-0-00006) a3+ ..

+if2a>,} (290)
fla—l—if2a = I/4m.

a=
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72 varies from 0 to 1 for the full range of Poisson’s ratio and the series shows that 7 does not
vary as much with 72 as it does in vertical translation. This is to be expected as the forces
here are predominantly shearing forces. Figure 15 shows that the characteristics are similar
to those of vertical translation. -

(b) Static displacement

2
Put ¢, = 0 and U=~}z(—3—i_l—).

= e (291)

This relation shows that the horizontal static stiffness of the plate does not vary very much
with Poisson’s ratio.

By the method used previously it may be shown that horizontal displacements caused
by the shear stress distribution of the semi-infinite case contain terms such as

_ [sin (x7,) sinh (80) J,(xr) d
T"f : x,;cltl)sh (B r T (202)
coth [§(x?—£?2)¥] = —icot [0(A2—x2)#]
= —icot [b‘k(l—~2—kz+ —):l for small x. (293)
Put 5 — (271;—]:1) ™

Expand to the first order in #2, and

. (2n—1) mx?
1cot[é‘/c( 2/c”+ )]—T’

T :fe xry 4k2xr dx

o —1(2rn—1) mx2kx2r

+ f () ds, (294)

where ¢ is small. The first integral, having an integrand of order x~1, diverges, i.e. the plate
resonates, when
’ _(2n—1)m _ (2n—1) mt
2% 2ppt

o=y

These frequencies are those of a block fixed at the bottom, free at the top and oscillating
in shear.

(295)

7. DawmpiNG

It has been seen that propagation of energy to infinity provides a damping of the motion
of the plate. If the medium possesses true damping the energy is dissipated in the medium.

It may be shown that a form of damping in the medium may be represented by the
addition of a small imaginary term to the modulus of rigidity, . There are now no real roots
of f(x) = 0,1i.e. no free waves and the integral expressions for the displacements have unique
values. A contour integration of these integrals shows that the same values of f; and f, arise
together with small additional terms representing the effect of the damping.

The free-wave term which is the major part of f, now appears automatically. If the
damping is small the additional terms are small and the values of f; and f; of the undamped
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case are substantially those of the damped case. A form of viscous damping may be repre-
sented by replacing x by x(1+ia,Kj) and a form of Coulomb damping by #(1+iK,).
It may be shown that the changes in f; and f, due to damping are given by:

(a) Viscous damping
Nfy = ao Ky it B2+ Y21 —-2)],
2 da, v (296)

(6) Coulomb damping

Replace a,K; by K,. These deviations are shown in figure 16. It is to be noticed that f;
becomes numerically smaller and f, greater for small values of a,.

14
0
0-2 :\\
01 =~ p— 1 A_ﬁ: Affl/
// N IZ o 4K,
A2
0 0-4 0-8 \1.2 1-6 Afz A:fz
‘ TO ' }To—’ ay Ky

Ficure 16. Damping curves, semi-infinite space, vertical translation.

8. NOTE ON EXPERIMENTAL WORK

A comparison of these theoretical results with experimental ones gave a very close agree-
ment.The experimental work is being published separately, but a short note on the technique
is not out of place here. :

Sheets of foam rubber, 1in. in thickness and glued together to form a block 3 ft. square
and 14 in. deep, proved to be a satisfactory ‘elastic half-space’ for a base radius of 1 cm and
the range of frequency implied by the theoretical curves. Repeated reflexions of the
transmitted waves from the square boundary were sufficiently attenuated by the natural
damping of the material as to be insignificant by the time they reached the centre again.
The block thus behaved as though it were unbounded.

A small fibre disk on the centre of the upper face of the rubber was excited by a coil
attached to it carrying a variable frequency current and oscillating in a constant field.

As foam rubber is of low density and the radius of the disk necessarily small, the mass
associated with the disk also had to be small to provide relevant ‘5’ values. Consequently
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a means of measuring the dynamic displacements of the disk without introducing further
inertia was needed. A capacity pick-up giving oscilloscope deflexions proportional to disk
displacements achieved this requirement satisfactorily.

The author thanks Professor R. N. Arnold and Dr G. B. Warburton of the University
of Edinburgh, under whose supervision this work was done. Acknowledgement is made to
the New Zealand Department of Scientific and Industrial Research for a National Research
Scholarship and to Mr I. D. Dick, Acting Director of the Dominion Physical Laboratory,
Assistant Secretary, D.S.I.R.; N.Z., for encouragement in preparing this paper.
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